Aufgabe 5 (10 Punkte):

Partikel mit einem mittleren Korndurchmesser von 4,2 µm (ρ_P = 2300 kg/m³) sollen aus einer Suspension in Wasser ((ρ_F = 1000 kg/m³, η_F = 10⁻³ Pa*s) mit Hilfe einer Rohrzentrifuge abgetrennt werden.

Daten der Rohrzentrifuge:

Länge des Rotors: L = 0,65 mInnendurchmesser des Rotors: $d_T = 0,105$ Überlaufringdurchmesser: $d_i = 0,029 \text{ m}$ Drehzahl: $n = 12 000 \text{ min}^{-1}$

- a) Wählen Sie einen vernünftigen Wert für den Volumenstrom, mit dem die Suspension kontinuierlich der Zentrifuge zugeleitet wird, damit die Partikel weitestgehend abgeschieden werden (Nachweis!).
- b) Welchen Druckverlust muss eine Pumpe überwinden, wenn sie die Suspension über einen Höhenunterschied von 2 m in einer Rohrstrecke von 10 m (hydraulisch glatt, 2 cm Innendurchmesser) mit verschiedenen Einbauten (zusammen ζ = 2,5) kontinuierlich zur Zentrifuge fördern soll?
- c) Wie lange benötigt man ca. um die 4000 L Suspension mit einer Beladung von μ = 0,03 auf diese Weise zu reinigen? Dabei ist zu beachten, dass die Schlammschicht in der Zentrifuge in der Zentrifuge eine Porosität von ca. ϵ = 0,6 hat.